Interrogation 3 - CORRECTION

Soit $E = \mathbb{R}_2[X]$, l'espace des polynômes de degré au plus 2 à coefficients réels, et $\mathscr{B} = \{1, X, X^2\}$, la base canonique de E.

On considère l'endomorphisme $f: E \to E$ défini par :

$$f(P(X)) = P(X) + XP'(X),$$

où P'(X) désigne la dérivée de P(X).

- 1. Déterminer la matrice de f dans la base \mathscr{B} .
- 2. Calculer les valeurs propres de f.
- 3. Déterminer les sous-espaces propres de f.
- 4. La matrice de f est-elle diagonalisable? Justifier.
- 5. Si f est diagonalisable, trouver une matrice diagonale semblable à la matrice de f et une matrice de passage P associée.
- 6. Si $P = aX^2 + bX + c$, exprimer $f \circ f \circ f \circ f(P)$ en fonction de $(a, b, c) \in \mathbb{R}^3$.

Correction

1. Matrice de f dans la base B:

Pour $P(X) = a_0 + a_1X + a_2X^2$, on calcule :

$$f(1) = X$$
, $f(X) = X + X = 2X$, $f(X^2) = X^2 + X \times (2X) = 3X^2$.

En exprimant dans \mathcal{B} , on a:

$$f(1) = 1 \cdot 1 + 0 \cdot X + 0 \cdot X^2$$
, $f(X) = 0 \cdot 1 + 2 \cdot X + 0 \cdot X^2$, $f(X^2) = 0 \cdot 1 + 0 \cdot X + 3 \cdot X^2$.

La matrice de f dans \mathscr{B} est donc :

$$M_f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

2. Valeurs propres de f:

Le polynôme caractéristique est :

$$\det(M_f - \lambda I) = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 2)(\lambda - 3).$$

Les valeurs propres sont $\lambda = 1, 2, 3$.

3. Sous-espaces propres :

Pour $\lambda = 1$: on sait que $dim(E_1) = m(1) = 1$ et que $1 \in E_1$ car f(1) = 1 donc : $E_1 = Vect(1)$.

Pour $\lambda = 2$: on sait que $dim(E_2) = m(2) = 1$ et que $X \in E_2$ car f(X) = 2X donc : $E_2 = Vect(X)$.

Pour $\lambda = 3$: on sait que $dim(E_3) = m(3) = 1$ et que $X^2 \in E_3$ car $f(X^2) = 3X^2$ donc : $E_3 = Vect(X^2)$.

On obtient : $P = I_3$ si $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

4. Diagonalisabilité:

Le polynôme caractéristique ets scindé à racines simples donc f est diagonalisable.

5. Matrice diagonale et matrice de passage :

La matrice diagonale est : $D = M_f$ La matrice de passage P est I_3 .

6. La matrice colonne des coordonnées de $f \circ f \circ f \circ f(P)$ dans la base $\mathscr B$ est :

$$\begin{split} M_f^4 \times (P)_{\mathscr{B}} &= (PDP^{-1})^4 \times \begin{pmatrix} c \\ b \\ a \end{pmatrix} = PD^4P^{-1} \times \begin{pmatrix} c \\ b \\ a \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^4 & 0 \\ 0 & 0 & 3^4 \end{pmatrix} \times \begin{pmatrix} c \\ b \\ a \end{pmatrix} = \begin{pmatrix} c \\ 16b \\ 81a \end{pmatrix} \end{split}$$

Donc:

$$f \circ f \circ f \circ f(aX^2 + bX + c) = c + 16bX + 81aX^2$$