Chap.12 : Calcul de sommes et de produits

Dans tout ce qui suivra, n, p et q désigneront des entiers naturels et $(u_n)_{n\in\mathbb{N}}$ désignera une suite de nombres réels ou complexes.

1 Sommes finies

1.1 La notation de sommation

Définition 1.1. La somme $u_0 + u_1 + ... + u_n$ des n + 1 premiers termes de la suite $(u_n)_{n \in \mathbb{N}}$ est notée : $\sum_{k=0}^{n} u_k$.

On dit que la "variable" k est l'indice de la somme ou que la somme est indexée par k.

La somme $u_p + u_1 + ... + u_q$ des termes de la suite $(u_n)_{n \in \mathbb{N}}$ dont les indices sont compris entre p et q où $p \leq q$ est notée : $\sum_{k=n}^{q} u_k$.

Application 1.2. Écrire les sommes suivantes à l'aide du symbole \sum :

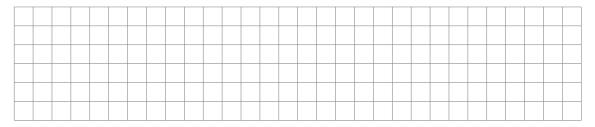
1.
$$S_1 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{15}$$

2.
$$S_2 = 4^3 + 5^3 + \dots + 59^3$$

3.
$$S_3 = \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \dots + \frac{37}{38}$$

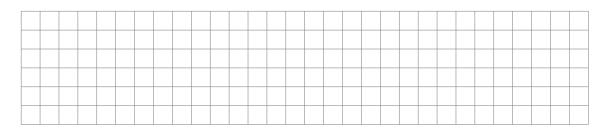
4.
$$S_4 = 3 \times 4 + 4 \times 5 + \dots + 23 \times 24$$

5.
$$S_5 = 1 + 2 + 4 + 8 + \dots + 1024$$



Application 1.3. Écrire explicitement les sommes :

$$S_1 = \sum_{i=0}^{5} \frac{1}{2i+2}, \ S_2 = \sum_{i=2}^{6} \frac{i^2}{3i-2} \ et \ S_3 = \sum_{k=1}^{6} cos(\frac{k\pi}{6})$$



1.2 Sommes à connaître

Proposition 1.4. • $\forall n \in \mathbb{N}, \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$

•
$$\forall q \in \mathbb{R} - \{1\}, \forall n \in \mathbb{N}, \sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$$

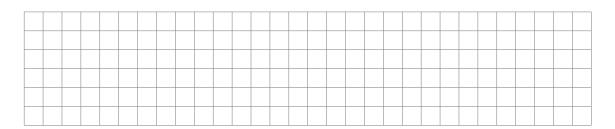
Application 1.5. Calculer les sommes suivantes en donnant le résultat sous forme fractionnaire :

1.
$$S_1 = \sum_{k=1}^{70} 3k$$

3.
$$S_3 = \sum_{k=0}^{8} \frac{1}{e^k}$$

2.
$$S_2 = \sum_{k=0}^{7} (-3)^k$$

4.
$$S_4 = \sum_{k=0}^{6} \left(\frac{-3}{10}\right)^k$$



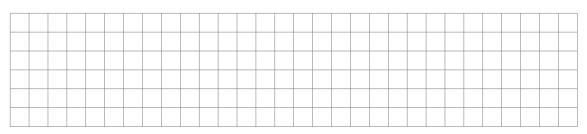
1.3 La relation de Chasles pour une somme finie

Proposition 1.6. Pour tout entier naturel $n_0 \in [p, q]$ avec p < q, alors :

$$\sum_{k=p}^{q} u_k = \sum_{k=p}^{n_0} u_k + \sum_{k=n_0+1}^{q} u_k$$

Proposition 1.7. $\forall q \in \mathbb{R} - \{1\}, \forall (n,m) \in \mathbb{N}^2, m \leq n \sum_{k=m}^n q^k = q^m \frac{1-q^{n-m+1}}{1-q}$

Preuve:



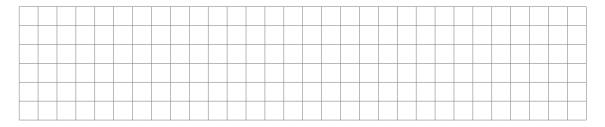
Application 1.8. Calculer les sommes suivantes en donnant le résultat sous forme fractionnaire:

1.
$$S_1 = \sum_{i=12}^{30} i$$

3.
$$S_3 = \sum_{k=4}^{10} \frac{1}{5^k}$$

2.
$$S_2 = \sum_{k=3}^{12} (-2)^k$$

4.
$$S_4 = \sum_{k=4}^{11} (-\frac{1}{5})^k$$



1.4 Linéarité

Proposition 1.9. •
$$\sum_{k=p}^{q} (u_k + v_k) = \sum_{k=p}^{q} u_k + \sum_{k=p}^{q} v_k$$

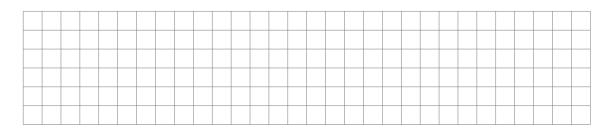
•
$$\forall \lambda \in \mathbb{R}, \sum_{k=p}^{q} \lambda u_k = \lambda \sum_{k=p}^{q} u_k$$

Application 1.10. Exprimer en fonction de n les sommes :

1.
$$S_1 = \sum_{k=0}^{n} (3k)$$

3.
$$S_3 = \sum_{k=1}^{n} (3k - 4)$$

2.
$$S_2 = \sum_{k=0}^{n} (5k - 5^k)$$



1.5 Changement d'indice dans une somme

On peut parfois être amené à effectuer un « changement d'indice » dans une somme. Voici un exemple.

On part de la somme $\sum_{k=0}^{6} u_k$ et on effectue le changement d'indice k = l - 2,

alors l = k + 2 et :

k	1	2	3	4	5	6
l = k + 2	3	4	5	6	7	8

Ainsi, le nouvel indice va de 1+2=3 à 6+2=8.

D'où :
$$\sum_{k=1}^{6} u_k = \sum_{l=3}^{8} u_{l-2}$$

Proposition 1.11.
$$\sum_{k=0}^{n} u_k = \sum_{l=n}^{n+p} u_{l-p}$$

Méthode 1.12. Pour effectuer un changement d'indice dans une somme indexée par l'indice k:

- 1. on identifie la relation entre l'ancien indice k et le nouvel indice l;
- 2. à l'aide des bornes de l'ensemble d'indexation de k, on détermine l'ensemble d'indexation de l ;
- 3. on écrit le symbole \sum avec le nouvel indice l et ses nouvelles bornes;
- 4. dans le terme général de la somme, on remplace k par son expression en fonction de l.

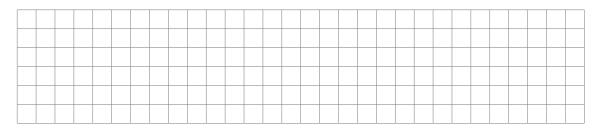
Application 1.13. Dans chacun des cas suivants, effectuer le changement de variable demandé dans la somme S:

1.
$$S = \sum_{k=1}^{10} k^2$$
 en posant $l = k-1$

2.
$$S = \sum_{l=3}^{8} 3l + 1$$
 en posant $n = l - 3$

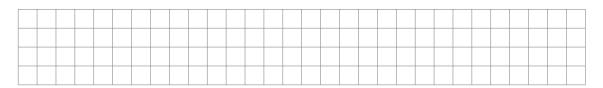
3.
$$S = \sum_{m=2}^{10} \frac{2m}{m+3}$$
 en posant $k = m-2$

4.
$$S = \sum_{i=1}^{6} \cos(\frac{\pi i}{6})$$
 en posant $l = i - 1$



Application 1.14. Effectuer un changement d'indice dans la somme $\sum\limits_{i=3}^{n+1} ln(i)$

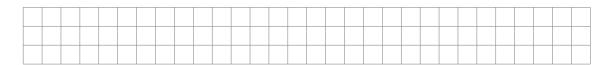
de sorte que la somme soit indexée à partir de 0.



Application 1.15. Effectuer un changement d'indice dans la somme

$$\sum_{k=0}^{n} (k+3)^2$$

de sorte que le terme général de la somme devienne i^2 , où i est le nouvel indice de sommation.



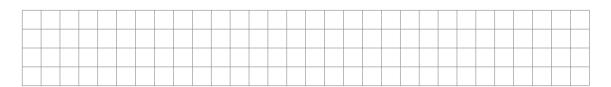
1.6 Sommes télescopiques

Proposition 1.16. Pour
$$p \le n$$
, on $a : \sum_{k=p}^{n} (u_{k+1} - u_k) = u_{n+1} - u_p$.

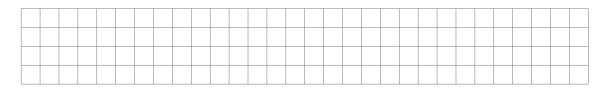
On dit alors que la somme est télescopique.

Application 1.17. 1. Vérifier que : $\forall k \in \mathbb{N}^*, \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$

2. En déduire la valeur de $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ en fonction de n.



Application 1.18. Exprimer $\sum_{i=2}^{n} ln(1-\frac{1}{i})$ en fonction n grâce à un télescopage de termes.



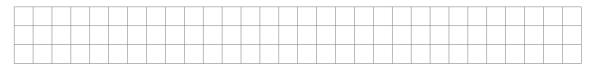
1.7 Factorisation de $a^n - b^n$

Théorème 1.19. Soient a et $b \in \mathbb{R}$ et $n \in \mathbb{N}^*$:

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-k-1}$$

Preuve:

Application 1.20. Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, factoriser l'expression $1 - x^n$.



Proposition 1.21. • $a^2 - b^2 = (a - b)(a + b)$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

•
$$a^4 - b^4 = (a - b)(a^3 + a^2b + ab^2 + b^3)$$

•
$$a^5 - b^5 = (a - b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4)$$

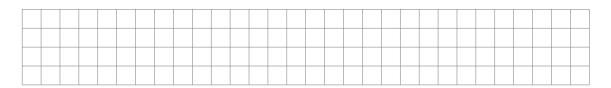
Application 1.22. Factoriser les expressions suivantes :

1.
$$x^5 - 32$$

3.
$$625 - 16x^4$$

2.
$$8x^3 - 64$$

4.
$$e^3 - 27x^3$$



2 Produits finis

2.1 La notation de produit

Définition 2.1. Le produit $u_0 \times u_1 \times ... \times u_n$ des n+1 premiers termes de la suite $(u_k)_{k \in \mathbb{N}}$ est noté $\prod_{k=0}^{n} u_k$.

On lit cette écriture "produit de k=0 jusqu'à n de u_k ". on dit que le produit est **indexé** par k ou que k est l'**indice** du produit. Le produit $u_p \times u_{p+1} \times ... \times u_q$ des termes de la suite $(u_k)_{k \in \mathbb{N}}$ dont les indices sont compris entre p et q, si $p \leq q$, est noté :

$$\prod_{k=p}^q u_k = u_p \times u_{p+1} \times \ldots \times u_q$$

Application 2.2. Écrire à l'aide du symbole \prod :

1.
$$\frac{1}{4} \times \frac{1}{5} \times \frac{1}{6} \times ... \times \frac{1}{32}$$

2.
$$sin(\frac{\pi}{2}) \times sin(\frac{\pi}{2^2}) \times sin(\frac{\pi}{2^3}) \dots \times sin(\frac{\pi}{2^{15}})$$

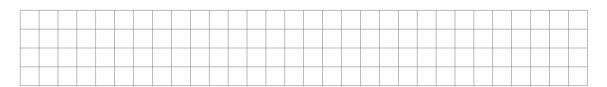
Application 2.3. Exprimer chacun des produits suivants sans le symbole \prod :

$$1. \prod_{i=1}^{7} \frac{i}{i+1}$$

$$3. \prod_{l=0}^{7} 4^l$$

2.
$$\prod_{k=1}^{12} 3k$$

$$4. \prod_{k=2}^{6} \frac{2k}{k-1}$$



2.2 Opérations sur les produits

Proposition 2.4. Relation de Chasles.

Pour tout entier $n_0 \in \llbracket p;q \rrbracket$ avec p < q, on a:

$$\prod_{k=p}^q u_k = (\prod_{k=p}^{n_0} u_k) \times (\prod_{k=n_0+1}^q u_k)$$

Proposition 2.5. Si $(v_k)_{k\in\mathbb{N}}$ est une autre suite de nombres réels ou complexes, et si $\lambda \in \mathbb{R}$ alors :

$$\bullet \prod_{k=p}^{q} (u_k \times v_k) = (\prod_{k=p}^{q} u_k) \times (\prod_{k=p}^{q} v_k)$$

$$\bullet \prod_{k=p}^{q} (\lambda u_k) = \lambda^{q-p+1} \prod_{k=p}^{q} u_k$$

Proposition 2.6. Changement d'indice dans un produit.

La changement d'indice k = l - p laisse le produit inchangé :

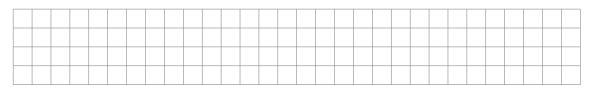
$$\prod_{k=0}^{n} u_k = \prod_{l=p}^{n+p} u_{l-p}$$

Application 2.7. Exprimer sans le symbole \prod :

1.
$$\prod_{i=0}^{10} \left(\frac{2}{5}\right)^i \times \prod_{i=0}^{10} \left(\frac{1}{4}\right)^i$$

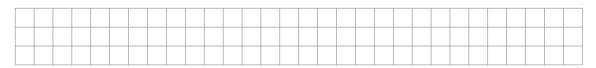
3.
$$\prod_{i=2}^{9} (2 \times 3^i)$$

2.
$$\prod_{k=0}^{9} 4^k$$



Application 2.8. Donner une autre écriture du produit $P = \prod_{k=4}^{30} 3^{k-3}$ à

l'aide du symbole \prod .



Proposition 2.9.

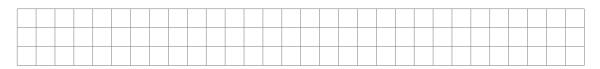
•
$$exp(\sum_{k=0}^{n} u_k) = \prod_{k=0}^{n} e^{u_k}$$

• On suppose que $u_k > 0$ pour tout $k \in \mathbb{N}$, alors :

$$ln(\prod_{k=0}^{n} u_k) = \sum_{k=0}^{n} ln(u_k)$$

Proposition 2.10. Il existe également une notion de produit télescopique.

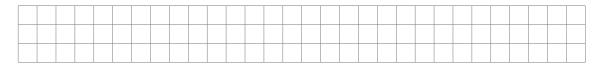
Pour
$$p \le n$$
, $\prod_{k=p}^{n} \frac{u_{k+1}}{u_k} = \frac{u_{n+1}}{u_p}$.



Application 2.11. Exprimer en fonction de n et sans les symboles \prod et \sum :

1.
$$\prod_{k=0}^{n} exp(3k)$$

2.
$$\sum_{i=1}^{n} ln(5 \times \frac{i+1}{i})$$



3 Triangle de pascal et binôme de Newton

3.1 Factorielle d'un entier et coefficients binomiaux

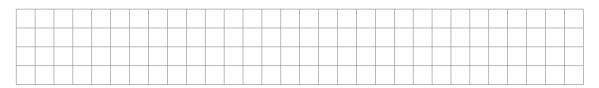
Définition 3.1. On appelle factorielle de $n \in \mathbb{N}$ le nombre entier que l'on note n! et que l'on lit "factorielle n" par :

$$0! = 1 \ et \ si \ n \neq 0, \ n! = \prod_{k=1}^{n} k = 1 \times 2 \times 3 \times ... \times n$$

Application 3.2. Soit $n \geq 4$, simplifier les écritures :

1.
$$Q_1 = \frac{(n+2)!}{3!(n-4)!}$$

2.
$$Q_2 = \sum_{i=1}^{n} ln(2i)$$



Définition 3.3. Les coefficients binomiaux sont les entiers naturels notés $\binom{n}{p}$ et qui se lisent "p parmi n", définis par :

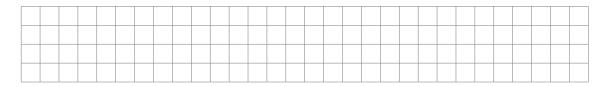
$$\binom{n}{p} = \begin{cases} \frac{n!}{p! \times (n-p)!} & si \ 0 \le p \le n \\ 0 & sinon. \end{cases}$$

•
$$\binom{n}{0} = 1$$
, $\binom{n}{1} = n$ et $\binom{n}{n} = 1$

Proposition 3.4. •
$$\binom{n}{0} = 1$$
, $\binom{n}{1} = n$ et $\binom{n}{n} = 1$ • $\forall p \in [0; n], \binom{n}{p} = \binom{n}{n-p}$

Preuve:

Application 3.5. Calculer $A = \binom{9}{4}$, $B = \binom{100}{99}$ et $C = \binom{102}{2}$.



Proposition 3.6. Relation de Pascal.

Soit un entier naturel n et $1 \le k \le n-1$, alors :

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

Définition 3.7. Le triangle de Pascal.

3.2 Binôme de Newton

Théorème 3.8.
$$\forall (a,b) \in \mathbb{R}^2, (a+b)^n = \sum\limits_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

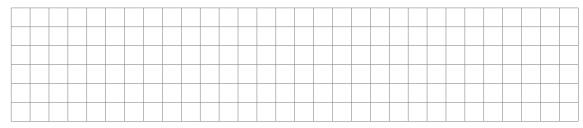
Développez les expressions suivantes :

1.
$$(3x+2)^3$$

3.
$$(3-4x)^3$$

2.
$$(2x-1)^4$$

4.
$$(2x+3)^5$$



Application 3.9. Exprimer en fonction de n les sommes suivantes :

$$1. \sum_{k=0}^{n} \binom{n}{k} 2^k$$

$$3. \sum_{k=0}^{n} \binom{n}{k} (-1)^k$$

$$2. \sum_{k=0}^{n} \binom{n}{k}$$

4.
$$\sum_{k=0}^{n} \binom{n}{k} 3^k 5^{n-k}$$

